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ABSTRACT

- A system of two elliptic p.d..' , which model the conduction-convection

problein in a porous sedium with change of phase is considered.

The first equation describes the heat conduction and holds in a fixed

domain. The second takes into account the convective motions and holds in the

unknown melted part of the region.

The existence of a locally regular weak solution is proved by making us

of various compactness argunents. ,
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SIGNIFICANCE AND EXPLANATION

Consider the problem of artificial freezing or thawing of ground water.

The problem has important engineering applications such as ground

stabilization at construction sites and the prevention of water leakage into

tunnels or shafts.

In the melted part of the ground the convective motions forced by

temperature gradients affect significantly the free boundary of separation

between the melted and solid regions.

As a mathematical model of this situation we study a system of two

elliptic equations, one describing heat conduction and the other the velocity

flow of convection. We demonstrate that the problem has a solution in a

suitable weak sense. Regularity properties of the solution are also derived.
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EXISTENCE FOR A PROBLEM ZN GROUND FREEZING

Z. DiBenedetto and C. N. Elliott
2

1. INTRODUCTION

There exists laboratory and theoretical evidence to suggest that convection can play

an important role in heat transfer with change of phase in a porous medium (see

[6,7,8,1]). Ne mention specifically the artificial freezing or thawing of groundwater in

view of the important engineering applications such as ground stabilization at construction

sites and the prevention of water leakage into tunnels or shafts (see (11, 121). in

certain circumstances, the moving boundary problem considered by the above authors has a

nontrivial steady state. This leads to the study of a free boundary problem for a system

of two elliptic partial differential equations.

ret 0 be a bounded domain in R2 lying between two closed curves 3 4 and 3 -.

The domain 0 is the union of two sets 9- and 0+ which are respectively the frozen and

unfrozen regions with the phase change temperature being zero at the unknown free boundary

r separating the sets. Figure 1 can be interpreted as a vertical cross-section of a

portion 0 of frozen ground, where a horizontal pipe of cross-section a +2 carries warm

oil. Then around the pipe there is an unfrozen region 0 +  
If A and - are

interchanged then one could regard Figure 1 as depicting the artificial freezing of a

horizontal layer of ground by the insertion of a vertical freeze pipe. In this case the

experiments of Frivik and ConLini (61 and the numerical work of Goldstein and Reid [71 and

Barrett and Elliott (1), show that the flow of groundwater can significantly affect the

extent of the frozen region

IDepertment of rMtheatics, Indiana University, Bloomington, IN 47405
Departaent of Mathematics, Imperial College of Science and Technology, Huxley Building,

Queen's ato, London U17 2BZ

*Spoasored by the United States Army under Contract No. DAAG29-80-C-0041. Partially

supported by National Science Foundation Grant 48-296-0 NCS 8300293.
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Figure 1

Let u,v and p denote, respectively, dimensionless temperature, velocity and

pressure. The model equations are then the steady state convection-conduction equation,

the continuity equation end Darcy's law which links the pressure to the velocity [1,71.

The problem can be formulated as follows.

Find {u,v,p~rl such that

+ 2
(.)-hu + XVu f + -f~ in S1

i-ax i

(1.2) 0 x e siluwx > o); a- {_x e a1uwx < 0)

a - a u r u a-;aa _aa Ua-2

(1.3) v _k k0{Pp + g+(u,x)l in 0

(1.4) div v- 0 in A I v S in 0

30N

(1.6) u* on 3n, >)0 on 3 +0, < 0 on a0.

2
Here A~ > 0 is a prescribed physical constant, f 0  L - f rerset a nw

distribution of heat sources (or sinks) in 0. k0  is the coefficient of permeability and

gis a buoyancy force.

Remarks: Mi If fi * i - 1,2 is the Hsaviside function in the KLdirection then on

the right hand side of (1.1) we allow sources (or sinks), like Dirac masses.

-2-



(ii) The problem has been formulated having in mind the case when thawing occurs and

2 is a vertical layer. This is then a problem in free convection where the flow is

driven by the vertical temperature gradient. In the case of artificial freezing in a

horizontal layer the effect of a prescribed flow on the extent of the frozen region is of

interest and then (1.5) may be replaced by the prescription of a non-zero normal velocity

or pressure.

We observe that the incompressibility condition (1.4) and the Darcy law (1.3) imply

that the pressure solves the elliptic equation

(1.7) div k0 [Vp + ;(u,x)1 - 0 in a

The aim of this paper is to prove an existence theorem for (1.1)-(0.6) in a suitable

weak sense. The difficulty here is represented by the fact that (1.3) and (1.7) are

conditions which hold on the unknown region e . They might be interpreted in the sense of

+ +
distributions over A if 2 is open. This latter information will be implied by the

local H51der continuity of the temperature. The main points of the proof are the

introduction of a penalized problem (in the spirit of 13,4]) and a careful use of the

information (1.4) and the fact that the space dimension is two, in order to prove that a

is O6lder continuous. We now come to a precise formulation of our results.

Definition. By a weak solution of (1.1)-(1.7) we mean a triple (u,Vp) such that

(i) u 6 W1 ' 2 (a)n L'( a) n ca() u - on 32

(ii) v e [L) and v- 0 a.e. on [u < 011 V-Nu 0

(iii) p e V1'2 (tu ) 01),

satisfying (the smmation notation is used)

(1.8) f (Vu - A )vndx - f ond - f fn, dx
a 2 i

(. ) ;1,2 ( u) n e n(1)

M1 9) f [Vp + *9(u,x)].vnd - 0
(01

•n e 1,2 (0) suh that smp n C [u > 01

-3-!



(0.10) f (+v - k0 [VP + (u.,x)]).ndx - 0

+ 2 2
Vn e IL () such that supp *n C [u > 01

Remarks: (M) Since we require u e C (0). the set [u > 01 is open in the relative

topology of Q and hence (1.9)-(1.10) are meaningful.

(i1) (1.9)-(1.10) imply that div v = 0 in D'((u > 01).

The integrals in (1.8)-(t.fO) are vell defined, modulo basic assumptions listed below.

[A 0 satisfies the cone condition (see [101)

[A1] fi e L2+K (0), K 0, i = 0,1,2

[A2 1 e H 1/2(3Q) n i(35), > 0 on 3+S and * 0 on 917

3 2
(A3 ] g: 3 + R is continuous and

I (u,x)I C Clult + o(X)

where C and t are given nonnegative constants with t e [0,1), and

90(x) e L2 (a)

Theorem. Let [A0 1-[A31 hold. Then problem (1.1)-(1.7) has a weak solution.

Remark. Let t = 1 in [A 3 ]. The existence of a weak solution in this case follows from a

remark in section 5 provided the data is sufficiently small.

The paper is organized as follows. In section 2 a family of penalized (or moothed)

problems is introduced. Basic results for this family are stated in section 2 and proved

in sections 4 and 5. The theorem is demonstrated in section 3. Standard notation for

function spaces is employed throughout the paper and l*p1 is used to denote the LP(Q)

norm. The measure of a set A in I? is denoted by JAl.

-4-
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2. CONTI~RUCTroNS OF THE SOLUTION

For C 0 consider the Lipschitz continuous function a k kC (a) defined by

(2.1) kC(S ) - +0  c (k0 - )s * e [-aO]

< 4 -c

and the problem of finding functions OC¢ v Cpe satisfying

u, e w 2 l uc=* on 3$

* 2 2+
(2.2) v C [L()] divy .0 in D'(Q)

p, e w 1 2 ()

(2.3) f (Vuc.vn - x)*Cu Vnldx f f f 0 fdx - fI fnxd x , v e 61,2(a) n Lw(a)

(2.4) f kC(U)[VpC + g(u x)-Vndx - O. Vn e w 1,2 ( )

and

(2.5) f k (u )(VP ;( ,X)))*dx - 0, ev M ()12

This smoothing of the problem (1.1)-(1.2) has a sound physical basis. In reality it

may indeed be the case that the coefficient of permeability takes a tiny non-zero value in

the frosen region (see (6)). Hence the study of (2.1)-(2.5) is of interest in its own

right.

The proof of the theorem rests upon the following propositions

Provosition 1.

For all c > 0, problem (2.2)-(2.5) has a solution. Moreover, VC > 0

(2.6) loqil ( Go

(2.7) luei2,0 + I"url2,1 - G 1

(2.9) 0 p 12 4 G
£ £ "2,2 2



(2.9) 1+ (
eC2,2 < 3

For constants G depending upon the data in assumptions CA1 - [A3]) and independent of E.

Proposition 2.

For every compact set K C n there exists constants Y(K), a e (0,1) depending only

upon the data and independent of E such that

(2.10) fu~ Cx) - U C(Y~t Y(KIX - Y10, V(x.y) e K, VC ), 0

Remark

If the boundary datum # e C a then the equi-II81der continuity of the net Nu C

carries up to 5, with constants Y and a depending upon the data and a

The proof of propositions I and 2 are postponed to sections 4 and 5.



3. PROOF Or THE THSOREN

Let us sussme Propositions 1,2 for the moment and let us conclude the proof of

existence by using these facts.

Because of (2.6)-(2.10) subnets out of { } and fu can be selected (and
C C

relabeled with ) such that
+ + 2n (L 12"e + v weakly in It (0)1

u + u weakly in W
1 2 (Q)

u + u uniformly on compact sets of 2

Letting C * 0 in (2.3) proves (1.8). From (2.4)-(2.5) we have

f * .Vndx - 0 vn e w1 ,2 (a)

and hence

div 0 in D'()

Since {u) are equibounded and equi-H51der continuous in Q, the uniform liait u

is Older continuoma in 2. and therefore the sets Cu ) 01 and (u < 01 are open in the

relative topology of A.

Let K be compact and contained in [u < 01. There exists o > 0 and c0 < 0/4

such that

u(x) 9 -0 a x e K

u¢(x) --o/2 Vx e it, V < c 0

k (U€  " t o x e K VC < 0 "

By (2.5)

- -k luC)[Vp + glu,,x)] a.e. in 2
Ve C £ Cp

and therefore

f IV C 2dx 1 2 f kCu )IVp 9 21d,, + 2 f kC(u Cl;I2dx

K K K

-2 + 2. 2
C C C 2. a £2,0

-7-
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Letting C + 0 by the weak lower semicontinuity of the norm we obtain v - 0 a.e. in

K, and since K is an arbitrary compact set in [u < 01 we have

v - 0 a.e. in lu < 01

It remains to prove (1.9)-(1.10). Let K C [u > 0] be compact. There exist

0 > 0, CO > 0 such that

u(x) > a, x e K

Uc(x) > a/2 , Yx e K , vc< c

k (uC(x)) - k0 , Vx eK, v < co

By (2.8) and the definition of k C(u )

IVp I C//Cc2,K 2 0

The vectors {Vp C are therefore weakly compact in [L
2 
(K)2 and for a subnet, relabeled

with £ K

Vp£ K weakly in [L
2
(K)]

2

CK

Let (K n  be a family of compact subsets of [u > 0] such that

K nC [u > 01, K nC Ks+ 1, U K = Eu > 0]
n)1

Then by a diagonal process a subnet out of {Vp can be selected (and relabeled with

£) such that

VpC * weakly in I
2

L > 0 2)
2

Next we went to identify t as the gradient of a function p e w1 ' 2 ([u > 01).

Let A be an open set in R, N ) 2 and let D(A) be the space of all C vector

fields # in A which are solenoidal (div - 0). We set

3a(A) = (the [L
2
(A)]I

N  
closure of Da(A)]

Let also G(A) denote the space of those square integrable vector fields in

EL (A)IN obtained as gradients of functions in W2(A).

-a



By Weyl's lemma, [9, the orthogonal decomposition,

[L2 W) N .o (A) 0 G(A)

holds.

We must show that t e G([u > 0]), or equivalently that

(3.1) f . 0 , V$ e J0 ( (u > 01)
[U>0

Since V0 (u > 0]) is dense in J ([U > 0]) it will suffice to prove (3.1) for all

e ,,([u 0j).

now Ve > 0 p C w 12 (Cu > 0]), therefore for all e e D ([u > 01) we have

f Vp 4 dx - f p div $ odx 0
(u>0] U>01

TAtting E + 0 (3.1) follows. We will set

= Vp, p e W,2([u > 0)

Consider now (2.4) and (2.5) where n and *n are supported on Some compact set

K C [u > 0]. By an argument similar to the one above, if c is sufficiently small we must

have k C(u ) - k0 . TAtting E + 0 we recover (1.9) Vn e w 1
'

2
(11) supp n C K, and (1.10)

+ 2 2

ve [L (9)) supp nt C K. Since K C Eu > 01 is arbitrary (1.9) and (1.10) follow.



4. A PRIORI CSrIMATUIC

It is the purpose of this section to prove the following two lemmas.

14

+ 2 2
Let v e IL (0)] , div v - 0 in D'(0a) and v1 2,9 4 V for a given positive

constant V. If (AO]-IA2 ] hold then the problem

(4.1) (V AVu}V dx f gf 0 n dx - f ft dx Vn e ;1,2 (-) L7W)

Il a n 1

has a unique solution u e w 9
2
1). Also the following a priori estimates hold:

(4.2) lul
2  

+ Iul 2 (I + V
2

(4.3) l1l a 1 I + V)

and u in H31der continuous on compact subsets of 0 with the H51der exponent a

and Wolder constant Y depending on [A0 )-[A2 ] and V.

Lemma 2

Let u e L(g) be arbitrary and £ a given positive constant. If [A0 1A 3] hold

then the problem of finding p - p(u,.) e V
1
'
2
(U) such that

(4.4) f k (u)[Vp + g(u,xl].Vndx f 0 Vn e w 1
'
2 2)

has a solution which belong to a unique class [p] e W 1 '2 ())/i. The vector field

v(u,E) = k fu)[Vp(u,c) + g(u,x)1 is unique and the following estimates hold:

(4.5) I/k(u) iVp(u,C)I 2, 0 kl/2c11 01/2..u t I
10291 a +, 9 0I o 2,A )

(4.6) lV(u,)l 2,0 2koCI0Ml 12 ult' + lg0 2, }

where C, t and q0 are introduced in (A3 ]. Finally if u1,u2 6 Le(m) then

-10-
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(4.7) lVp(U 1 ,C)- vp(u2 ,C)l2, G lu - u2,.,+ lI(U 1,x) - X)1.,

+ t

* 012, + , ll= n,

and

(4.8) (u1 fC) - v(u 2 #C)l2,9 C G2IVp(uIc) - Vp(u2 #)I 2,

where G depend on 1l1, k 0 , C and C. In particular as £ * 0 the G becme

unbounded.

4-(a) istence. uniquness and boundednesn for u

The available existence and uniqueness theory cannot be directly applied here since

v is not regular enouO. lot us prove uniqueness first. Suppose u I and u2  are

solutions of (4.1). Then v ul - u2 e ;12 (a) satisfies

(4.9) J Vyw - v)Vyidx - 0 • 1,2 Ll

Taking n - v ; 12(a) in (4.9), where

n , w(x) > n

V(x) - v(n). v(x) e t-n.n

-n , w(x) < -n

and noting that dlv v - 0, results in the equation

I V% 2 dx _ 0 n - 1,2,...

Thus the convergence of wn  to w implies the equation

f i'v12 dx - 0

and the uniqueness of a.

Rxistence is proved by considering a sequence of problems

(4.10) u - et 21) : (Vun - nn)Vdx - f 0 f0  - fn x)dx l e (1 2 )

-11-



where 4 is an extension of 4 into A such that

1#1 +Ito 4
a W1,2 () 0

for a given fixed constant #of and 'n1  is a sequence in D a (a) which converges to v

in J 0 ((i) such that

Since div vn . 0, Poincare's inequality implies that

(wn) f (VW - Av w)Vndx
a

is an inner product on ; 1 2 (gl) which qenerates an equivalent topology in 02()

Similarly the right hand side of (4.10) can be written as f(ni) where f(-) is a

continuous linear functional on ;1,(al) and, since 0 e W1,(2). a standard application

of the Ris: representation theorem yields the existence and uniqueness of a solution to

(4.10).

We now obtain some estimates for un which are independent of n. Taking

u - 4 in (4.10) we obtain
n

2 1 *2
(4.11) f {IV(u W ) AV *V(u - ) Idi

n 2 n 0n a

Observing that

f n * )2 dx 0

2 2
a repeated application of the inequality ab IC a + b /a, yields the existence of a

constant Y depending only on A much that

-12-



(
(4.12) M t #) 2,C Y(1#1 1v 2 ,,2 2

V 2,* -,A it 1 2,0 2,2 if 1I2,0

+ ya 1 If0 12, + Olu - 012

Poincar6's Inequality and (4.12) imply the estimate

(4.13) lu 12 + lVU 12 Y (I1 + V2)
nt 2, ft 2.0 0

where Y0  depends on the data {#,fO,fl,f 21 and Q.

An L bound for un  vii now be derived. Let Then the function

S- (u n - )e v 1 ,2 (0) and can be used as a test function in (4.10) to give

(4.14) f IV(u n )* + Av nVu (u - )+dx f fo(un f i ax (u - )dx.0l ftf n n 0ln

Setting

At (x e Qlu(x) > x)

and noting that

n VU (u - 9)d,, x * V(u- t) .2

we obtain from (4.14) the inequality

2

-)+2 +2 2 f 2
n nn -0 AL

R61der's inequality and (A1] imply that

(4.15+ 2 + 2 1-2/2+

n  2, n 2,0a + t

where Y1  depends only upon the data. Let M be a number larger than 211., and

consider the sequence of increasing levels

1 1 4 + N(I - 2
1
) m - 0,1,2.

A bound on ems sup u(x) will be obtained by taking I - I In (4.15). 5l1der's
xen

inequality and Sobolev embedding (see for example inequality (2.12) on p. 45 of [10]) imply

-13-



that for 2 < p ( -

f (u n  I m1)+
2 dx e CIf 

(u n - t )+Pd)
2/PlA It1 2/p

+1+2 11-2/p.10/m cll lln - '.a+1 )1 2aA 2nXi 1

where c depends only on p. We deduce from (4.15) that

(4.16) f (u n  1 £ +2dx 4 -A I
1
-/PI(un 1+2 2 + A -I12/2+ •

n 12 31A10+1 + 2 , +1

m+1
Next observe that since Im 1 - I + M/2

+(u + 1 2 4 *( - 2 +12
n - +1 20 a (n a 2,Q

and

1(u 2+,12 > f (u +2 t 2dx:) (N)2 IA In 2 22+I
it3+1

Choose

p - 4(2 + ()/K e (2,-)

and set

a - K/2(2 + K) e (0,1)

Substituting into (4.16), we obtain, for a constant y3  depending only upon the data

2m+1 2a 3 + 2+2o

(4.17) f(U -t ) 2 d [(' N + n i a +2dK)1+
fl n 01 f (u

Setting

1,2

f (U ) dx

(4.17) implies

- . 1+o 22(1+o)
(4.18) Y.+ 1  ' b4 by, b 2

-14-
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where y 4  depends only upon the data and in particular is Independent Of M. Inequality

(4.18) implies, with the aid of lema 4.7 of (103, p. 66, that ym + 0 as a i f

2

YO-(Y4

Consequently if H is chosen to satisfy /2 2

M2 , -I/Ob l/0 12
Y4 hn2.0

we have that Y-0 i.e. f (u - 2N) +2dx - and

aes asgp u(x) e. is ma(~ 30 1u1n2 ,l

where is depends only upon the data and is independent of v. A bound for es inf ut x)

is obtained in a similar fashion and we deduce that

(4.19) 
3  1.,D 4 ~ maxfUI 1#1 ~ 1 A

Passing to the limit in (4.13) and (4.19) as n tends to Infinity we obtain the existence

of a solution to (4.1) satisfying (4.2) and (4.3).

4-(b) Older continuity of u

The results of [103 imply that the N5lder exponent and constant of u may be

estimated in terms of the I q )- 2, nor= of v and the data. However the proof of

the theorem requires that these estimates are independent of C and it is known only that

lVI 2. e V where V does not depend on C, (see Section 4-(c)). In the following, the

argisgents of [10, p. 91, 90) are adapted to demonstrate that the extra information of

div v - 0 and the space dimension being two is sufficient to conclude that u is lulder

continuous in S1 with estimates depending only on 1vi ,S and the data.

Let x0 be an arbitrary point of Q and let 9(p) denote the ball

3() x :Ix - x 0 1 < P). For x0 e a2, P will always be chosen so small that

SO2P) 0. For 0 e (0,1), 4(-) will always denote a smooth cutoff function such that

-15-



(1) supp C C B(T)

(ii) C - I on B(p - ap) and C(x) 6 [0,11

The Hlder continuity of u is shown by the judicious use of an integral inequality

which follows directly from the integral identity (4.1). For arbitrary k e Ut the

results of 4-(a) imply that the functions

(4.20) n - t(u - k)k
2 
C 2)

are admsable test functions in (4.1) and setting

S-(x e B(P)lu(x) k) ,

S {x e (p)lu(x) < k)

gives

(4.21) ft IvulC2dx f t  (falu - k lC 2 _ f i u x 
- C 2 " cx i 2C(u " kldx

% 1i

1 2 2

" " vY I((u "k)C2)udx "J±. (u -Ic)VuYCdx .

.0 .0

The inequality ab 4 6a2 + 6Bb and the facts that 0 I C I(1 and diLv i 0 imply that

the right hand side of (4.21) is bounded by

I j [f 2 + (2 + 1) f 2 lx + 26 ft Ivu 2 C 2dx

AkP i.1 Aki,

+ (u - k) 2(01 (2 + 2IvCI2)dx +. A ft ICI a~ k ) 2 dx

Choosing 8 1/2 and observing that

2
2 2 2ic

ft E x -E i~c +K~

+ V" l 1{ 2+l lW:12d + *. I-I¢I.- d •

% 1P ,2

froosn (4-2,)weded otheinu at

x~t[
A&i



(4.22) IV(u - k)* , p 2 IVul21C2 dx Y (00-2u - ki2

2 B49-OD) ft2
akeP 2

eAjp

*Y 2lA IP + Y 2(00) fIt l;I( 2- -1 )2dx

wher 72 is a constant depending only upon the data and in independent of v, and (Op)

is assumed to be less than or equal to one.

Proposition 3

There exists a positive number ; depending upon the data and the (L (g12) norm of

v such that either

ess osc u 2sf
/ 2 s

3(3/2)

or

ass ooc u (1 - 27( + ' ) ) ess oec u.
3(3/2) 3(2t)

This proposition is proved via a series of lmas which make use of the inequality

(4.22). Setting

Sss °sup u, v -e s inf u, w oe O8C u E 0 " v
3(23) 3(2) 3(2R)

we have, obviously, either

(4.23) lix e a(R)lu(x) > , - ( R I(3)1

or

(4.24) 8x 6 3(R)tu(x) < JA -3(R)l

It is assumed that (4.23) holds vith the arguments being similar if (4.24) holds.

Setting, s 6 8,

A A w18 5

(4.23) implies that

-17-



(4.25) IAI < . ,R2 We e .

The following lema due to Do Giorgi [5] will be used.

LeAS 3

There exists a universal constant B such that for every pair of numbers 9. k such

that 1 I k,

(i - k)I(x e S(R)lu(x) > t11/2

IN ex •(iluix) < k~l R(R)n[u>kl\[u>I1

Lema 4

For every 60 e (0.1) there exists an integer so= s0(ve) > 0 such that either

w < 2"0Iec2+.c

or

IA ao < 600 
2

Proof.

Applying lsma 3 with I - U - w2
"1
8

1 
and k " p Q 1 yields,

(4.26) (--L) IA 1/2 . OR IVUld

25+1 9+11 I(R)\AoaI A l\Al.

By virtue of (4.25) IB(R)\AnI ) WR2 /2, hence an application of HIlder's inequality to the

right hand side of (4.20) results in

(4.27) (:;-,~)2 IAIl -(6) IA\AIl fj UId
2 As\A +

Now the inequality

(4.28) f IVul 2dx 4 f IVul2dx - v(u - 1 + 1 2

As\AI.1  Aa 2 a

holds and this last term can be estimated by making use of (4.22) written for

-18-



k m -2 - 8  P 2R and a- 1/2 which leads to

IVu 1 2 2. C(3 ft 2 ~I(u - U w+
2

2 - ( 2 M- .2, ) 3(2)
- 2

2i + Y 7 __+2

2 2 O(2)

since (u - P + W)2-2) +  
w2

"
8 on B(2R). By Milder's inequality

R-1 f IvdIx C Ri-11vv2,0I(14R2)1/2

B(2R)

so that

2KU+ t" ++ 2 Y I+V) (j_)2 +Y
Iv2 - 8 2,B(R) •  3( +  e T4m

which leads to, upon substitution into (4.27) and (4.28), the inequality

2K

(4.29) C-.-) 2 A I C (20) 2j (I + V)(!) 2 + y3 2+,'IA\AI
2 2 4'2+1 3 2

if 3K/2+K ( w2 0 and s o  a then (4.29) implies that

(4.30) A+ 1  • y(1 Y )AI\A+., •- ,2 .... so -

Adding these inequalities, recalling that IA ) iAs 0 and |A| a uR 2/2, ve obtain

(a - 1)A0 I 'C Y(0 + V)R 2/2

Bence given 00 e (0,1) to prove the laem let

(4.31) o -. 2. V)1a 20 0 1

where (r] denotes the largest integer contained lese or equal to r.

-19-
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Lemma S

Let , ego sup (I + *SO ) for any so e v. There exists a number 60 e (011)

such that if

IA + _ ,I w t2

20

then either

R <I 0/2+K
2

or

IA I.
U 2O + - 3,3/2

2

Proof.

Consder the sequence of balls B(Rn ) where

R - + B- n, 01.2,....

n 2 2 f+

and the sequence of increasing levels

k IJ - + -- n" ...
n 2 2"2SO 2

n+2
The inequality (4.22) can now be applied with k kn , p a Rn and oR n R/2 This

leads to the inequality

+2 2 n+2 2 2
kV~ n k 2,93(R ) 2 R- f+ (a - k n d

2n+2

+I - 2 jj ,.. ,) 2' +2(- 2 R. _ 2 a

I +  1 " 'V 2 ( 3 +A2 .

Akn 
R n

Since sup (u kn)! + 4N and
D(R) 

2 "

-20-
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2 2 + 2/2

.r, II(a k n)dx ( R I * 1 lA2, n k *R /

AkRe

fram (4.32) we obtain the inequality

(4.33) M(u - k) ) 12 4 n2 ,
2
n+

4
N +

n 2.D8R*., 1 ) 2 R2 Ak n# R

+ 1"2 2
+ 2+Kc n+2 + 1 1/2

2 knOR 2 fT k, Rn

4 2 +- 2
Y0+V22n+ + I*+ 2+K +*HIA + 1 1/21R22(1 + V)22+A4 I 'k + In l Rn k n,

Applying lawa 3 with it - k n+ and k - k. over the ball B(Rn+1 ) gives

(4.34) B + l 1/2 R1t2  IVux
I Akt R \An+1 I2(R ,1)\ 1A' k n R +1\ n+1' n+1

Since

IA+ I c IJA 0,I 01wR where e e (0,1)

we have

ID(ft.,,A .ftt , .n, - , " fe( -4 1, 
2
/S

provided 00 in less or equal to 1/9.

Consequently (4.34) implLes that

R 1A~ + (!fi) 2 ,A+ f IvuI 2 d
n+12 k n R1 I n R i+1 +

and mince

-21-
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-f Iv u 1  
I(u - k )I 2

dx
AkneRn+ B(R n+ 1)

we have from (4.33) that

+ 4n+ 2+ 2
-
1+

2  
+

F- (4.35) IAk n+'Rn+I y ( 624(1 + V) IAk nR n / S2 + IAknR 2 AV2 + iAR 1+1/ 2 _/R1

where y 6  is independent of v and n. Refining
2

5 IAk 
I/ R2

ft kn.Rnnfln

(4.35) becomes

) R
2

(
1 -

2/2+) 5 2-2/2+K 61+1/21
•y 6 24n(14 f[t 2 t f

H n n

Provided 00 < 1/w we have that 0 < 6 < 1 and if

H>R K/2+ /2

then

(4.36) C • y2 4n(1 + V)a
n+1 7

where
2

On the basis of lemma 4.7 of [10, p. 66] it follows that provided

--l/T 4 - I/T26 0 < [y 7(1 + V)])l/(243l

the sequence n converges to zero. Hence if we take

(4.37)1 8 nf ((I+V)- I/T (2 4)-/T 2

then provided

R
2 

6 0 A 1
+ 

W I <0R
2 ,

280,

-22-
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either

H K/2+K
2

or

(a- + H,R/2
2So

Proof of the Proposition 3

lat 90 be chosen as in (4.37). By 1aa 4 there exists an integer s0(60,,) such

that either

(4.38) 0 < 2 -sR
K / 2 + K

or

(4.39) IA < e 6 wR2

g0 o

holds. 7o prove the proposition we need only consider the second possibility and show that

it implies

-(So )
(4.40) see oc u ( - 2 ) ses o u

B(R/2) B(2R)

Prom lemme 5, (4.39) implies that either

(4.41) 
<

or

(4.42) IA
+  

I 0.
5 2

2S0

Suppose (4.41) holds. By the definition of H,

ess sup u w- + 'IR K/ 2 +K < 0 - ( + W +1
B(R) 2 0 2 O 2So

+1  2 0
+ 1

since (4.38) does not hold. Hence

ess osc u 4 ess ose u 4 0 -

3(R/2) R(R) 20

and we have that (4.40) holds. Otherwise if (4.42) holds then

-23-



eas sup ui 4 U + -1 H

D(R/2) 2 60 2

280 2 R) 2 2B0 +2m0 +

and again (4.40) holds. Consequently the number ; claimed by the proposition to the

so given by (4.311 and (4.37).

TAM" 6

u is K5lder continuous in 9 with exponent

(4.43) a I i{ 4 ~ n Vol} where a - 1 - 2

Proof.

For every x. e SI and for all R < I such that S(2R) C ni, set W(R) - ass oac ui.

~ c/S+i)
We have shown that for all such R, either to(R/4) < 2 .t o (R/4) 4 aw(R). The.

the lama is an immediate consequence of lesma 4.8 of 110, p. 66) and in particular

(4.44) oc u 4G(P-) 0 <P <R

where

(4.45) G - -4a uaxd2Iul. a I 2 5RK//Ic1

Plemark

if the boundary datum *in Wdlder continuous with *~. expon~nt 8 then the

demkonstrated H514er continuity of u carries over to r? with a new H51der exponent

depending on V and B. The proof of this follows from the arguments of 110, p. 90-951

with the modifications indicated above.
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4-(c). A priori estimates on the pressure

Lot elements of the quotient space W12 (0)/t be denoted by In). The quotient norm

I []l - nf Inl 1 2(
ne[n] V (A

is equivalent to *IVn12 ,0  for n e In). Thus for any u e L(m),

f kc (u)VVndx [m],(n) e we12(/

defines an inner product for which W1'2 ( )/R is a Hilbert space,and

f kc (u)'g(u,x)Vndx VnI0 e w1'2 m/a

defines a continuous linear functional on W1 '2 ( )/R. Hence the Lax-Milgram theorem

implies that there exists a unique tp w 12 (0)/t such that

(4.46) p e (p), f kC(u)(Vp + g(ux)}Vndx - 0 vn e [z] e wl12I(I/a 6

The pressure p - p(uc) is determined up to an arbitrary constant by (4.46) whereas the

gradient of p, and hence v(u,C) - -kc(u){Vp(u,z) + ;(u,x)), is uniquely determined. it

remains only to obtain the inequalities (4.5)-(4.8). Taking n -p in (4.4) yields (4.5)

and hence the definition of ;(uE) gives (4.6). Inequality (4.7) is proved by writing

(4.4) for u1 and u2, differencing and choosing n - p(ulC) - p(U2.£). Finally (4.8)

is a consequence of (4.7) and the definition of v(u,E).

-25-
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5. PROOF OF PROPOSITIONS I AND 2.

Fix c > 0 and u e L"(0). Let p(u,c) e w 12 (0) solve

(5.1) f - div kC (ulVp(u,c) + 9(u,x)] . 0 in D'()

-kC (u)[Vp(u.c) + +(u,x)]J = 0

and v(u,e) be uniquely defined by

(5.2) v(u,E) = -kC (u)Vp(u,C) + g(u,x)}

Set F(u) e w1 ,2( ) to be the unique solution of

(5.3) -AF(u) + Av(u,c)VF(u) - f0 
+  

fi in DIM)

SF(u) = on a3 .

Obviously (5.1)-(5.3) are meant in the weak sense made precise earlier.

Lesma 7

(i) F = L7(0) + L7(a) is well defined.

(ii) There exists a constant M depending only upon the data in [A 0 ]-(A31 such

that if B(M) is the ball of radius 1 in L(g), then

F : B(M) + B(M)

(iii) F is completely continuous.

Proof. Lemas I and 2 imply that
1/2..t

F(u)I, ,a 4 1( + 2k 0{C021 Ou.l + I 012,) -- + ¥21ultfl

tet M be the solution of

y1 + 72 = > 0

Such an M exists since t e(0,1), and it can be determined a priori in terms of the data

only. Therefore if u e B(M) we have F(u) e B(M). This proves (ii). Statement (i) is a

consequence of the uniqueness of v(uc) and F(u) defined by (5.2) and (5.3).

By lemma 1 F(u) is H)lder continuous on compact subsets of 0 with constants

depending upon 2vi 4 V. If u e B(M) then by (4.6)
2,n

I + " 2$1 1 + 7 2 Mt

where y1 and 72 depend only upon the data. Therefore the Hlder constants of F(u)

can be a priori determined depending only on the data. Consequently F is compact. In

order to show continuity of F, let {u be a sequence in B(M) such that

-26-



uj # u0 6 3(N) uniformly in 11. Writing (5.3) in the weak form for uj and u0 we

obtain, by differencing. the equation

S(Vr(uI - .(u))- A;(ujc)r(u Vu 0 ))}Vndx
A0

- - f (;(ujS) - (u0 ,C))VF(u0 )ndx vn e ,2 (n
a

We take i = 7(uj) - (u0 ) and oberve that the second integral on the left hand aide

vanishes for this choice of n, since div V - 0 in D'(2). Thus we obtain

IV(r(u I - r(u C G(NIVr(u0 1120 )1l(ujC) - V(u 0 ,C)1 2,

In view of (4.7) and (4.6), the following inequality holds

IV(F(uj) - 1(u0 ))12, a G(N.IV(u 0 )12 .0'data,c).(u j - 01",a + IiGj - Gi I., }

where = (ui 1 x). Letting j + - we aee that, since ;(.,x) is continuous by A3]o

r(uj) + F(u0 ) strongly in 41'2(2)

However the uniform boundedness and HI1der continuity of {F(u )) implies for every

subsequence {F(u;,)} the existence of a subsequence u, for which

Vu F in L(a).

Hence F F F(u 0 ) and for the entire sequence
0

F(uj) + FluO ) in lW)

F is continuous and the lemma is proved.

By the Leray-Schauder fixed point theorem F has a fixed point in L(0). Therefore

we can conclude that Wr > 0 problem (2.2)-(2.3) has a solution and Propositions I and 2

then follow.
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Remark

in the came t =1. there exists an KN> 0 solving (5.4) when

y- y I2k0 CI11/ < 1. Thus we have existence for t -I when the data Is sufficiently

small.
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